I build and operate software systems that automate operations, bring financial visibility, and let businesses scale without adding people.
Real production systems with real constraints and measurable outcomes
All systems shown were built and operated in production by me. Metrics reflect real usage and trust earned over time.
Systems thinking • Predictable delivery • Measurable leverage
Map your current workflows, identify bottlenecks, and understand where manual processes are limiting scale.
Determine which automations will yield the highest operational ROI and prioritize the build accordingly.
Build the system with clean architecture, proper testing, and integration with your existing tools and data.
Deploy to production, train your team, monitor performance, and iterate based on actual usage data.
Real code from real projects • Clean, efficient, production-ready
// iOS App Architecture
import UIKit
import SwiftUI
import Combine
class AppCoordinator {
private let window: UIWindow
private var cancellables = Set<AnyCancellable>()
func start() {
let viewModel = MainViewModel()
let mainView = MainView(viewModel: viewModel)
window.rootViewController = UIHostingController(
rootView: mainView
)
window.makeKeyAndVisible()
// Handle deep linking
NotificationCenter.default
.publisher(for: .handleDeepLink)
.sink { [weak self] notification in
self?.handleDeepLink(notification.object as? URL)
}
.store(in: &cancellables)
}
}
// RESTful API with Express.js
const express = require('express');
const router = express.Router();
const { authenticate, rateLimit } = require('../middleware');
router.post('/api/users',
authenticate,
rateLimit({ max: 100, window: '15m' }),
async (req, res) => {
try {
const user = await User.create(req.body);
const token = jwt.sign({ id: user.id }, process.env.JWT_SECRET);
res.status(201).json({
success: true,
data: { user, token }
});
} catch (error) {
res.status(400).json({ error: error.message });
}
}
);
module.exports = router;
# Machine Learning Model
import tensorflow as tf
from tensorflow import keras
import numpy as np
class ModelTrainer:
def __init__(self, input_shape, num_classes):
self.model = self.build_model(input_shape, num_classes)
def build_model(self, input_shape, num_classes):
model = keras.Sequential([
keras.layers.Dense(128, activation='relu', input_shape=input_shape),
keras.layers.Dropout(0.3),
keras.layers.Dense(64, activation='relu'),
keras.layers.Dense(num_classes, activation='softmax')
])
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
return model
def train(self, X_train, y_train, epochs=50):
return self.model.fit(X_train, y_train, epochs=epochs)
Navigate my work through the command line
kevin@kcoh $ ls -la projects/
total 64K
4.0K Dec 9 06:18 ios-apps/ 10+ published iOS applications
4.0K Dec 9 06:18 web-apps/ Full-stack React & Node.js projects
4.0K Dec 9 06:18 api-services/ RESTful & GraphQL APIs
4.0K Dec 9 06:18 cloud-infrastructure/ AWS, Docker, Kubernetes deployments
1.0K Dec 9 06:18 README.md View complete portfolio at kevincohen.ca
Consistent commits • Active development • Always learning